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LETTER TO THE EDITOR 

Efficient quantisation scheme for the anisotropic 
Kepler problem 

D Wintgen, H Marxer and J S Briggs 
Fakultat fur Physik, Albert-Ludwigs-Universitat, Hermann-Herder-Strasse 3, D-7800 
Freiburg i Br, Federal Republic of Germany 

Received 17 July 1987 

Abstract. We have developed an efficient quantisation scheme for highly excited states of  
the anisotropic Kepler problem. This applies to the level spectrum of a donor impurity in 
semiconductors. Results for silicon and germanium are presented. 

In this letter we report on an efficient calculation scheme for highly excited states of 
the anisotropic Kepler problem. This applies to level spectra of donor impurities in 
semiconductors. These systems are very accurately described by the Hamiltonian [ 1-31 

( -+- a2 a22) h2  a' er 
H0'-2m,  ax2 dy 2mll  dz2 K r '  

Here K is the dielectric constant. Measuring length in units of the Bohr radius 
a,= h 2  K / m , e 2  and energies in units of the Rydberg energy ER= m , e 4 / 2 h 2 K 2  we 
arrive at the dimensionless Hamiltonian 

where y = m J m l l  is the mass ratio. Experimental information on y was derived from 
cyclotron resonances [4,5] and typical values are y = 0.2079 for silicon and y = 0.05134 
for germanium. Good quantum numbers are the azimuthal quantum number m and 
parity T, but no further reduction of variables is possible and the resulting Schrodinger 
equation is two dimensional and non-separable. The eigenvalue problem for the lowest 
nine states in a given mn- subspace has been tackled by Faulkner [ 11 with a hydrogen- 
like basis expansion. Here we will use a scaling property of the Hamiltonian and an 
expansion in a complete set of Sturmian functions. 

The Sturmian functions are defined as 

with 

where Ylm( 8, c p )  are the usual spherical harmonics and L:'+' are Laguerre polynomials 
[6]. A represents a free parameter and can be chosen arbitrarily. The Sturmians are 
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eigenfunctions of the Kepler Hamiltonian (hydrogen atom) if 2 A  equals an orbital 
quantum number n. Note that the Sturmians are orthonormal with respect to the 
weight function l / r  

(n’l’m’l I / r l  nlm) = 8nni311&,m,. (4) 

Matrix elements of the unit ( Id)  and of the Laplace operator are easy to derive, whereas 
the calculation for a2/az2 is tedious. They are given by 

n’= n 
n ’ = n + l  

(n‘l’m’l I d (  nlm) = 8,,.8,,, (5) 

(n’I’m‘lA1 nlm)= (-l)“+”’+’aA2(n’l’m’lIdI nlm) (6) 

(n’l ’m’ld2/az21 nlm) =f(n’l’m’I AI nlm) 

For the reduced matrix elements (n’l‘ 11 [VV]‘2’ I/ nl) we need the radial integrals 

J,,(n’I‘; n l )  = Iow d r  4L,r-P4!, p = 0, 1,2;  I ’ =  I ,  l+2 .  ( 7 6 )  

They are given by the numerically convenient expressions 

n’ !n !  (21+1+min(n, n ’ ) ) !  
(min(n, n ’ ) ) !  

J 2 ( n ’ l ;  n l ) =  A(21)! 

n ’ - n + 3  
n ’ -  n + 3 - p  

( 2 1 + n + 4 - p ) !  
n’! 

J,(n;1+2; n l )  = A P - ’  (n!(21+n’+5)!(21+n+ l ) !  

the remaining ones being given by (4) and (5). Thus we arrive at the following matrix 
equation: 

(8) 
__+ 

[-A(:)+ (1 - y ) A ( a 2 / a z 2 )  - 2(l/r)]$ = ( E / A ) ( 8 ) $  

where the matrices are real symmetric. They can be ordered to be banded and sparse. 
Because the dependences on y and A factor out, the matrices have to be computed, 
in principle, only once and can then be used for diagonalisations with arbitrary y and 
A. Equation (8) represents a generalised eigenvalue problem, but it can be reduced to 
a standard one. Therefore we divide (8) by A and put the Coulomb potential matrix 
into the right-hand side, which yields 

Because of (4), the ( l / r )  matrix is the identity matrix. We can now choose a particular 
value e of E / A 2  and diagonalise the resulting matrix of the left-hand side which gives 
the eigenvalues A .  The energies are then given by E = eh’. For calculations in a 
restricted Hilbert space (truncated basis) the quantity e plays the role of a variational 
parameter. However, if  the basis size is chosen large enough, the calculated energy 



Letter to the Editor L967 

spectra become independent of the particular choice of E because the (untruncated) 
basis set is always complete. Compared to (8) ,  (9) represents a much more powerful 
computational scheme. Note that for E = -a each basis state included is already a 
first-order eigenstate (in y - 1 )  of the antisotropic Kepler problem in contrast to the 
case where we fix the Sturmian parameter A and diagonalise the matrix equation (8) ,  
as is usually done in the literature. However we still diagonalise in a complete basis, 
in contrast to the case where we diagonalise the Hamiltonian in the bound-state 
hydrogen basis! Note that the use of such scaling methods is always applicable if the 
Hamiltonian consists of a sum of homogenous parts only (the homogeneity may, 
however, differ). Recently, a breakthrough in the theoretical treatment of the diamag- 
netic Kepler problem (hydrogen atom in a uniform magnetic field) has been made 
possible [7-111 by the use of similar scaling techniques. 

Including all states with n + 1 < 10 gives rise to small matrices of order 30. Choosing 
the free parameter E appropriately we are able to improve the results of Faulkner [ 13 
in that our eigenvalues are consistently lower. We then diagonalised the Hamiltonian 
in a very large basis, where all states with n + 1 < 75 were included ( E  = -0.01 used). 
The matrix size was 1406 with a bandwidth of 78. Such calculations need only a few 
minutes on  a Sperry 1182. Tables 1 and 2 give the results for silicon and germanium, 

Table 1. Effective-mass binding energies of donor levels in silicon ( y = 0.2079). Energies 
are given in units of E , .  Convergence is obtained in all digits quoted. Column 3 gives 
the quantum mechanical result of Faulkner [I] ,  column 4 the semiclassical results of 
Gutzwiller [3]. The notation of the states is taken from [ l ] .  

- 
1 s  
2 s  
3 s  
3 Do 
4 s  
4Do 
5 s  
5 Do 
5G" 
6SO 
6Do 
6G 

1.567 51 
0.444 13 
0.239 55 
0.18808 
0.146 07 
0.107 43 
0.096 77 
0.077 62 
0.073 20 
0.064 22 
0.058 37 
0.052 45 

1.568 
0.443 
0.238 
0.188 
0.143 
0.106 
0.094 
0.076 
0.069 

1.457 
0.419 
0.232 
0.183 
0.141 
0.106 
0.094 
0.077 
0.072 
0.063 
0.057 
0.052 

0.576 20 
0.275 06 
0.165 95 
0.117 29 
0.1 12 07 
0.081 79 
0.075 7 1 
0.062 33 
0.055 26 
0.050 32 
0.049 2 1 
0.042 23 

0.577 
0.275 
0.167 
0.1 17 
0.112 
0.081 
0.076 
0.060 
0.055 

0.526 
0.256 
0.156 
0.115 
0.108 
0.082 
0.075 
0.066 
0.055 
0.050 

2P, 0.32100 
3P, 0.15644 
4P, 0.10966 
4F, 0.09499 
5P, 0.07268 
5F, 0.063 16 
6P, 0.05369 
6F, 0.05026 
6H, 0.04445 
7P, 0.041 28 
7F, 0.03761 
7H, 0.03398 

0.321 
0.156 
0.110 
0.095 
0.072 
0.064 
0.052 
0.049 
0.044 

Table 2. Same as table 1, but for germanium (y=O.O5l 34). Column 3 gives the results 
o f  Faulkner 111. 

1s 2.09264 2.087 2Po 1.01587 1.008 2P, 0.36781 0.368 
2 s  0.76561 0.749 3P0 0.55037 0.545 3P, 0.221 79 0.219 
3 s  0.45808 0.428 4Po 0.361 27 0.355 4P, 0.16055 0.155 
3D0 0.31629 0.285 4Fo 0.26030 0.247 4F, 0.12981 0.130 
4 s  0.25785 0.249 5P0 0.19855 0.179 5P, 0.12272 0.113 
4Do 0.22882 0.185 5F0 0.171 17 0.170 5F, 0.10005 0.087 

5D0 0.14880 0.130 6Fo 0.12840 0.117 6F, 0.08239 0.068 
5G0 0.141 72 0.113 6Ho 0.11901 0.085 6H, 0.07604 0.062 
6So 0.11934 7Pn 0.10699 7P, 0.06720 
6Dn 0.10904 7F0 0.091 84 7F, 0.06209 
6G0 0.09952 7H0 0.09057 7H, 0.060 54 

5 s  0.17991 0.153 6Po 0.15729 0.130 6P, 0.08537 0.081 
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respectively, together with the results obtained by Faulkner [ 11 and Gutzwiller [3]. 
The agreement of Gutzwiller’s results, which were derived with classical periodic orbit 
theory [ 21, with our converged quantum calculations for excited states is remarkable. 

Although it seems that the results shown in the tables are obtained by ‘brute force’ 
methods they can in fact be calculated quite accurately with small basis expansions. 
We point out that the great advantage of the method is not only the high accuracy of 
the low-lying levels, but the convergence of many hundreds of excited states not listed 
in the tables. This will allow us to make a statistical analysis of the spectra. This 
seems to be interesting because the classical motion is ergodic, independent of how 
small the deviation of y from the integrable case y = 1 is [2,3]. However, trajectory 
calculations, not presented in this letter, show that the classical motion is confined to 
partly destroyed tori, so-called vague tori [12] or cantori [13], most of the time. The 
quantum behaviour of such systems is a topical subject of recent research studies [ 141. 
Work in this direction is in progress. 
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